References and Notes

- H. Stahelin and A. Trippmacher, *Eur. J. Cancer*, **10**, 801–808 (1974).
 A. Closse and R. Huguenin, *Helv. Chim. Acta*, **57**, 533–545 (1974).
 J. Flippen and I. Karle, *Biopolymers*, **15**, 1081–1092 (1976).

- (4) Other occurrence in Cyl-2: A. Hirotu, A. Suyuki, K. Aiyawa, and S. Tamura, *Agr. Biol. Chem.*, **37** (4), 953–954 (1973).
 (5) K. Titlestad, *Acta Chem. Scand., Ser. B*, **31**, 641–661 (1977).
- (6) D. H. Rich, P. Bhatnagar, P. Mathiaparanam, J. Grant, and J. Tam, J. Org.
- Chem., 43, 296-302 (1978). (7) All amino acids except glycine are of the L configuration unless noted. Standard abbreviation for amino acids, protecting groups, and peptides recommended by the IUPAC-IUB Commission on the Biochemical Nomenclature (J. Biol. Chem., 247, 977 (1972)) are used. Additional abbreviations follow: BOC, *tert*-butoxycarbonyl; Phe[(Z) Δ], (*Z*)-dehydrophenylalanine; Phe[3SBzI], 3-benzylthiophenylalanine; A'bu, α -aminoisobutyric acid; pMZ, p-methoxybenzyloxycarbonyl.
- (8) D. H. Rich and P. Mathiaparanam, Tetrahedron Lett., 4037 (1974)
- D. H. Rich and P. Bhatnagar, J. Am. Chem. Soc. 100, 2218 (1978).
 W. Meyer, G. Templeton, C. Grable, R. Jones, L. Kuyper, R. Lewis, C. Sigel,
- and S. Woodhead, *J. Am. Chem. Soc.*, **97**, 3802–3809 (1975). (11) D. H. Rich and J. P. Tam, *Tetrahedron Lett.*, 211–212 (1975). (12) S. Moore, D. H. Spackman, and W. H. Stein, *Anal. Chem.*, **30**, 1185 (1958).
- (13) P. Sieber, B. Riniker, M. Brugger, B. Kamber, and W. Rittel, Helv. Chim. Acta, 53, 2135 (1970).
- (14) F. Weygand and K. Hunger, Chem. Ber., 95, 1–16 (1962).
 (15) N. Izumiya, S. Lee, T. Kanmera, and H. Aoyagi, J. Am. Chem. Soc., 99, 8346 (1977), and references therein.
- (16) D. H. Rich and P. K. Bhatnagar, J. Am. Chem. Soc., 100, 2212 (1978). (17) Y. Shimohigashi, S. Lee, T. Kato, and N. Izumiya, Bull. Chem. Soc. Jpn., **51**, 584 (1978).

Daniel H. Rich,* Ronald D. Jasensky

School of Pharmacy, University of Wisconsin Madison, Wisconsin 53706 Received April 23, 1979

Regioselective Desulfonylation of Allylic Sulfones with Organotin Hydride Involving Double Migration of the Double Bond¹

Sir:

Allylic sulfides, sulfoxides, or sulfones have been proven to be valuable synthetic intermediates for carbon-carbon bond formation via the sulfur-stabilized carbanions.^{2,3}

In contrast to the various efforts to improve the regioselectivity in such allylic alkylation (α vs. γ),³ little attention has been directed toward improving the regioselectivity in the reductive desulfurization process of the resulting allylic alkylated sulfur compounds.4

In connection with our recent finding on the desulfurizative stannylation of propargyl (or allyl) sulfides via an S_{H} process,⁵ we report here the completely regioselective desulfonylation of allylic sulfones to energetically less stable terminal olefins with tri-n-butyltin hydride involving double migration of double bond as outlined in eq 1.

$$\begin{array}{c} \text{Tolso}_2 \underbrace{R} & \underbrace{\text{Bu}_3\text{SnH}}_{\text{\square or $h$$$$$$}} & R & \underbrace{\text{SnBu}_3}_{\text{\square or $h$$}} & H^+ & R & \dots & [1] \\ 1 & 2 & 3 \\ (\text{ Tol=}\underline{p}\text{-CH}_3C_6H_4) \end{array}$$

Thus, α -alkylated allyl tolyl sulfone (1)^{4a,6} reacted with twice the molar amount of tri-n-butyltin hydride7 in the presence of the catalytic amount of azobisisobutyronitrile (AIBN) in refluxing benzene for 2 h to afford allyltin derivatives (2) in good isolated yield.⁸ The same stannylated products (2) were also obtained by a photochemical procedure at room temperature for ~ 10 h (see Table II).

In both cases, the reaction was conveniently followed by the disappearance of the absorptions of tin hydride (1800 cm^{-1}) and sulfone $(1315 \pm 5, 1145 \pm 5 \text{ cm}^{-1})$ and also the appearance of the new band at 960 and 980 cm⁻¹ (TolSO₂SnBu₃)⁸ in the IR spectrum. All allyltins obtained here were a mixture of trans and cis isomers.9 The results of the thermal reaction

Sulfone	Product ¹⁰	Yield (%) ^a	
La Tol SO2-	2a //1// SnBu ₃	68	
lb TolSO2 -√	^{2b} ∧√√√ ^{SnBu} ₃	65	
LE TOISO2-	² € ∕∕∕∕√ ^{SnBu} 3	68	
ld Tolso2-	2d Ph V SnBu ₃	74	
	2e SnBu ₃	71	

a lsolated yield.

Table II. Desulfonylation of Allylic Sulfones

Sulfone	Product		Yield $(\ \)^{a}$ method A^{b} method B^{c}	
la TolSO2-	<u>3a</u>	$\sim\sim\sim$	80	57
1 TolSO2 - √	Зb	$\sim \sim \sim \sim$	80	66
lc TolSO2-	3c	$\sim\sim\sim\sim$	87	62
ld Tolso2-	₹	Ph	84	73
le So ₂ Tol	3e ऑ	5	46 ^d	26 ^d

^a Yields were determined by GC analysis. ^b Method A: thermal reaction in refluxing benzene for 2 h in the presence of AlBN. ^c Method B: photoreaction in degassed benzene solution for 10 h at room temperature using a Pyrex tube (100-W high-pressure mercury lamp). d Isolated yield.

are summarized in Table I.

The possible reaction scheme may be best explained in terms of the $\mathbf{S}_{\mathbf{H}'}$ process similar to the allenyl transfer from propargyl sulfide.5

$$\begin{array}{c} \text{TolSO}_2 & \xrightarrow{\text{Bu}_3 \text{Sn}^{\bullet}} \\ \downarrow \\ & \begin{pmatrix} \text{TolSO}_2 & \xrightarrow{\text{Bu}_3 \text{Sn}^{\bullet}} \\ & \text{TolSO}_2 & \xrightarrow{\text{Bu}_3 \text{Sn}^{\bullet}} \\ & \text{TolSO}_2 \text{SnBu}_3 \end{pmatrix} \xrightarrow{\text{TolSO}_2 \text{SnBu}_3} \end{array}$$

The present reaction provides a new general synthetic method for the preparation of allyltins. In view of the possible variation of the substituents (\mathbf{R}) ,^{4a} the method seems to have an advantage over the existing one, in which allylic Grignard reagents are generally employed.¹¹

The present facile stannylation reaction, when combined with the ease protolysis of allyltins,¹² offers a unique methodology, in which the completely regioselective desulfonylation of allylic sulfones becomes available.

Thus we investigated the one-pot desulfonylation without isolation of allyltin species. Treatment of the above reaction mixture with concentrated hydrochloric acid or acetic acid produced terminal olefins (3) in good yield without contamination of internal ones (see eq 1). The results are summarized in Table II.

This is a first example of the completely regioselective desulfurization of allylic sulfones to energetically less stable terminal olefins in contrast to the method of Umani-Ronchi et al.^{4a,13} Moreover, it is quite apparent that other electrophiles¹⁴ besides the proton can be used in the destannylation step to generate other functional alkenes. α -Alkylation, followed by stannylation of allyl sulfones, and subsequent destannylation with various electrophiles provide an attractive entry to the preparation of functional alkenes in a completely regioselective manner.

As an additional example, we demonstrated the preparation of deuterated alkenes 4a and 4b using acetic- d_3 acid-d.

$$R \xrightarrow{\text{SnBu}_3} \frac{\text{CD}_3\text{COOD}}{\text{ref. 24 h}} \qquad R \xrightarrow{\text{da, R=PhCH}_2} 55\%$$

$$4a, R=PhCH_2 \qquad 55\%$$

$$4b, R=CH_3(CH_2)_7 \qquad 76\%$$

The usefulness of the present concept for the completely regioselective allylic desulfurization to terminal olefins will be further enhanced if allylic sulfur compounds other than sulfones can be generally transfered to allyltins. This was realized in the following allylic sulfides under similar conditions.18

The ready availability of tri-n-butyltin hydride from inexpensive starting materials and the facility of the reaction provide a stimulus for further exploration of its chemistry and the chemistry of allyltins.

A typical procedure¹⁹ is as follows. A mixture of 3-tolylsulfonylnona-1-ene (1b, 447 mg, 1.38 mmol), tri-n-butyltin hydride (928 mg, 3.19 mmol), and AIBN (~10 mg) in dry benzene (3 mL) was refluxed under a nitrogen atmosphere for 2 h until the disappearance of the absorption of sulfone at 1320 and 1150 cm⁻¹. After the completion of the reaction, 1-(trin-butylstannyl)nona-2-ene (2b) was isolated by column chromatography (neutral alumina, eluted with benzene) in 65% yield (443 mg) as a colorless oil. The further purification was carried out by Kugelrohr distillation under reduced pressure: bp 136-142 °C (0.003 mm).

Protolysis of the crude reaction mixture was carried out using concentrated hydrochloric acid (3 mL) or acetic acid (3 mL) at room temperature for several hours. 1-Alkenes 3 were identified by the comparison of GC analysis and spectral data with those of authentic samples.

References and Notes

- (1) Synthetic Reactions Using Organotin and Sulfur Compounds. 3. For part 2, see ref 5, and for part 1, see Y. Ueno, A. Nakayama, and M. Okawara, *J. Am. Chem. Soc.*, **98**, 7440 (1976).
- (2) For leading references, see (a) D. A. Evans and G. C. Andrews, Acc. Chem. Res., 7, 147 (1974); (b) E. E. van Tamelen, R. A. Holton, R. E. Hopla, and W. E. Konz, J. Am. Chem. Soc., 94, 8228 (1972); (c) P. A. Grieco and Y. Masaki, J. Org. Chem., 39, 2135 (1974).
- (a) K. Narasaka, M. Hayashi, and T. Mukaiyama, Chem. Lett., 259 (1972); (3)(b) K. Hirai and Y. Kishida, Tetrahedron Lett., 2743 (1972); (c) T. Nakai, H. Shiono, and M. Okawara, Chem. Lett., 249 (1975); (d) T. Hayashi and H. Midorikawa, Synthesis, 100 (1975).
- Reductive desulfurization of allylic sulfur compounds, especially possessing (4)a terminal double bond, generally gave a mixture of internal and terminal olefins involving double-bond migration; see ref 3 and 2b. In the case of

$$hso_2 \xrightarrow{R} \xrightarrow{C_8^n} R$$

Ρ

the following sulfones, complete double-bond migration has been reported: (a) D. Savoia, C. Trombini, and A. Umani-Ronchi, J. Chem. Soc., Perkin Trans. 1, 123 (1977). On the other hand, allylic sulfones bearing an internal double bond have been desulfurized without double-bond migration with LiEtNH2; e.g., see (b) B. M. Trost, L. Weber, P. Strege, T. J. Fullerton, and J. Dietsch, J. Am. Chem. Soc., 100, 3426 (1978)

- (5) Y. Ueno and M. Okawara, J. Am. Chem. Soc., 101, 1893 (1979).
 (6) 1a: mp 43-44 °C (n-hexane). 1b: mp 53-54 °C (ether-n-hexane). 1c: mp 68-69 °C (CCl₄). 1d: mp 95-96 °C (ether-n-hexane). 1e: 210-215 °C (0.003 mm) Kugelrohr).
- H. G. Kuvila, Synthesis, 499 (197); K. Hayashi, J. Iyoda, and I. Shiihara, J. (7) Organomet. Chem., 10, 81 (1967). (8) Tolylsulfonyl molety was trapped by tin hydride to give tri-*n*-butyltolylsul-
- fonylstannane (Bu₃SnSO₂Tol). The IR absorptions at 960 and 980 cm⁻¹ suggest the sulfinate structure. Cf. W. Kitching, C. N. Fong, and A. J. Smith, J. Am. Chem. Soc., **91**, 767 (1969).
- (9) The stereochemistry of allyltins 2 was tentatively determined by its ¹³C NMR spectrum measured under the conditions of the minimum NOE in-

fluence and pulse repetition, 4.5 s. For example, the spectrum of 2b showed the β carbon to the butylin group at δ 128.89 and 128.01 (integration, 71:29), and the α carbon at δ 125.97 and 124.56 (integration, 70:30) indicative of its trans:cis ratio being ~70:30. Similar ratios were obtained for 2a, 2c, and 2d.

- (10) Kugelrohr distillation. 2a: bp 132–138 °C (0.002 mm). 2b: bp 136–142 °C (0.003 mm). 2c: 162–168 °C (0.002 mm). 2d: bp 186–196 °C (0.002 mm). 2e: 175-185 °C (0.003 mm).
- (11) D. Seyferth and M. A. Weiner, J. Org. Chem., 24, 1395 (1959).
 (12) Easy protolysis of allyltins is well known; see J. A. Verdone, J. A. Mangravite, M. Scarpa, and H. G. Kuivila, J. Am. Chem. Soc., 97, 843 (1975); S. J. Hannon, T. G. Tralor, J. Chem. Soc., Chem. Commun., 630 (1975)
- (13) $\dot{\gamma}$ -Alkylated allylic sulfones such as crotyl tolyl sulfone did not react with tri-n-butyltin hydride. This result is consistent with the observation that organotin hydride generally affords hydrostannylated products toward terminal olefins but not internal olefins: N. P. Neumann and R. Sommer, Justus Liebigs Ann. Chem., 675, 10 (1964).
- (14) For example, a wide variety of electrophiles such as alkyl halides, ¹⁵ al-dehydes, ¹⁶ or pentacarbonylmanganese halide¹⁷ are known to react with allyltins to produce functional alkenes.
- (15) J. Grignon, C. Serves, and M. Pereyre, J. Organomet. Chem., 96, 225 (1975).
- (16) G. Cainelli, G. Cardillo, M. Contento, G. Trapani, and A. Umani-Ronchi, J. Chem. Soc., Perkin Trans. 1, 400 (1973).
- (17) E. W. Abel and R. J. Rowley, J. Chem. Soc., Chem. Commun., 72 (1974)
- (18) Allylic sulfoxides, however, fail to give allyltin compounds, presumably owing to their facile [2,3]-sigmatropic rearrangement. See ref 2a.
- (19) All new compounds obtained here had satisfactory physical and spectral data as well as elemental analyses.

Y. Ueno,* S. Aoki, M. Okawara

Research Laboratory of Resources Utilization Tokyo Institute of Technology, Nagatsuta Midoriku, Yokohama 227, Japan Received April 3, 1979

¹⁵N NMR of cis-Diamine-Platinum(II) Complexes in Aqueous Solution¹

Sir:

The recent interest in the aqueous chemistry of cis-diamine-platinum(11) compounds is the result of the discovery by Rosenberg and co-workers² in 1969 that cis-dichlorodiammineplatinum(II) (DDP) is an antitumor agent. Although DDP and similar compounds have been shown to inhibit DNA synthesis, the exact mode of biological action of these compounds is not known³ despite a great number of studies of these anticancer agents and their interaction with biomolecules.⁴ This has prompted us to explore the potential of ¹⁵N magnetic resonance as a probe for determining the biological binding site of these Pt(II) species. Studies have suggested that the uncharged DDP species diffuses through the cell membrane but, once in the cell, dissociates Cl^- to form $cis(NH_3)_2$ - $Pt(H_2O)_2^{2+}$ which may then attack one or more basic nitrogen sites of the purine or pyrimidine bases in the nucleic acid chain.⁵ We have accordingly prepared and recorded ¹⁵N spectra for aqueous solutions of cis-(¹⁵NH₃)₂Pt(H₂O)₂²⁺(1), 15 N-enPt(H₂O)₂²⁺ (3) (15 N-en = 100% 15 N-labeled ethylenediamine) and for derivatives of 1 and 3 in which one or both H₂O molecules are replaced by 100% ¹⁵N-labeled 1-methylimidazole (15N-MeIm). We have found that replacement of H₂O by ¹⁵N-MeIm in the Pt(II) complexes produces a large change in both the ¹⁵N chemical shift and the ¹⁹⁵Pt-¹⁵N coupling constant for the ¹⁵NH₃ or ¹⁵N-en nitrogens. At the same time, the ¹⁵N resonances for both ¹⁵N₁ and ¹⁵N₃ of the ¹⁵N-MeIm are shifted from their positions in an aqueous solution of ¹⁵N-MeIm and both resonances display satellites due to ¹⁹⁵Pt-¹⁵N coupling. These results indicate that ¹⁵N NMR is a sensitive probe for detecting interactions between cisdiamine-platinum(11)²⁺ species and imidazole-ring nitrogen in biological systems (e.g., purine base sites of nucleic acids)